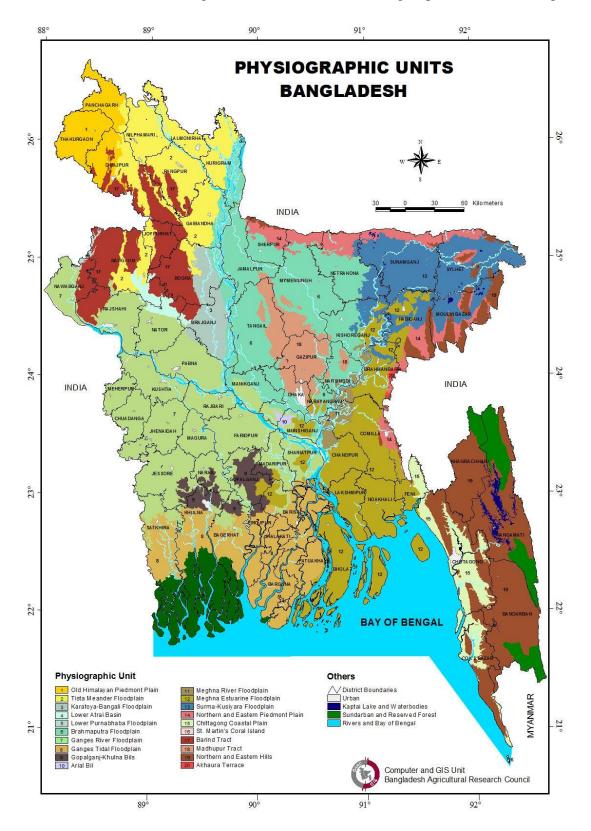

Land Resources Information and Maps of Bangladesh

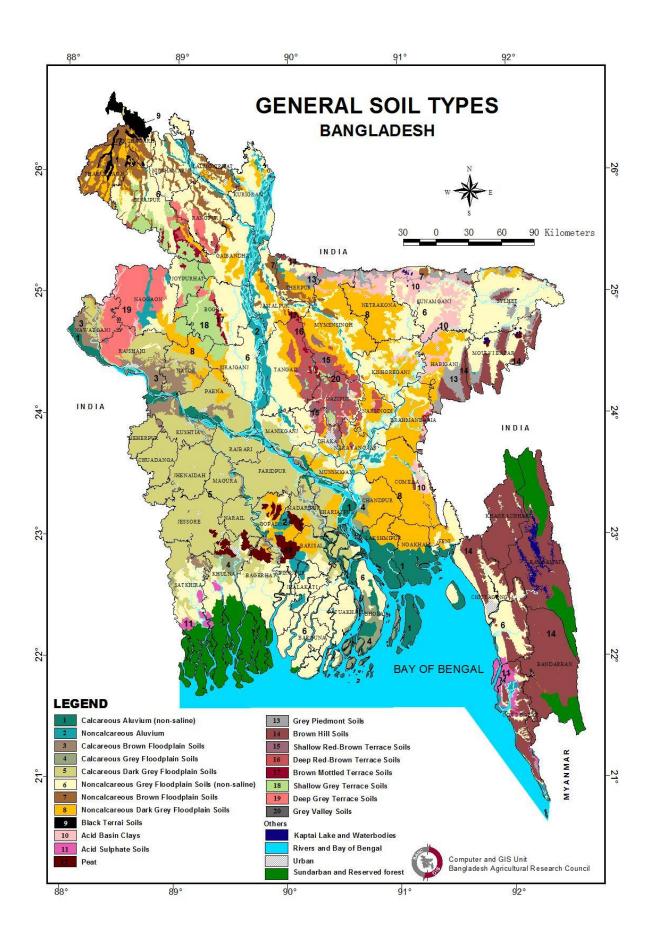
Agro-ecological Zone

An agro-ecological zone represents an area with unique combination of physiographic, soil, hydrological and agro-climatic characteristics. Overlay of successive layers of this information eventually figures in the agro-ecological zones. Altogether, 30 agro-ecological zones (Regions) were identified in Bangladesh. These regions again, due to differences in soils and/or land levels in relation to flooding were sub-divided into 88 sub regions.


Agro ecosystem characterization provides a unique basis for the rational planning of agricultural research, extension and development.

AEZ	Area (ha)	Percentage
Old Himalayan Piedmont Plain	400797	2.77%
Active Tista Floodplain	83644	0.58%
Tista Meander Floodplain	946804	6.54%
Karatoya-Bangali Floodplain	257158	1.78%
Lower Atrai Basin	85105	0.59%
Lower Purnabhaba Floodplain	12896	0.09%
Active Brahmaputra-Jamuna Floodplain	319001	2.20%
Young Brahmaputra-Jamuna Floodplain	592394	4.09%
Old Brahmaputra Floodplain	723037	4.99%
Active Ganges Floodplain	333447	2.30%
High Ganges River Floodplain	1320548	9.12%
Low Ganges River Floodplain	796751	5.50%
Ganges Tidal Floodplain	1706573	11.78%
Gopalganj-Khulna Bils	224700	1.55%
Arial Bil	14436	0.10%
Middle Meghna River Floodplain	155464	1.07%
Lower Meghna River Floodplain	90934	0.63%
Young Meghna Estuarine Floodplain	926885	6.40%
Old Meghna Estuarine Floodplain	774026	5.34%
Eastern Surma-Kusiyara Floodplain	462159	3.19%
Sylhet Basin	457345	3.16%
Northern and Eastern Piedmont Plain	403758	2.79%
Chittagong Coastal Plain	372016	2.57%
St. Martin's Coral Island	804	0.01%
Level Barind Tract	504851	3.49%
High Barind Tract	159964	1.10%
North-Eastern Barind Tract	107926	0.75%
Madhupur Tract	424359	2.93%
Northern and Eastern Hills	1817172	12.54%
Akhaura Terrace	11324	0.08%
Total Area	14486278	100.00%

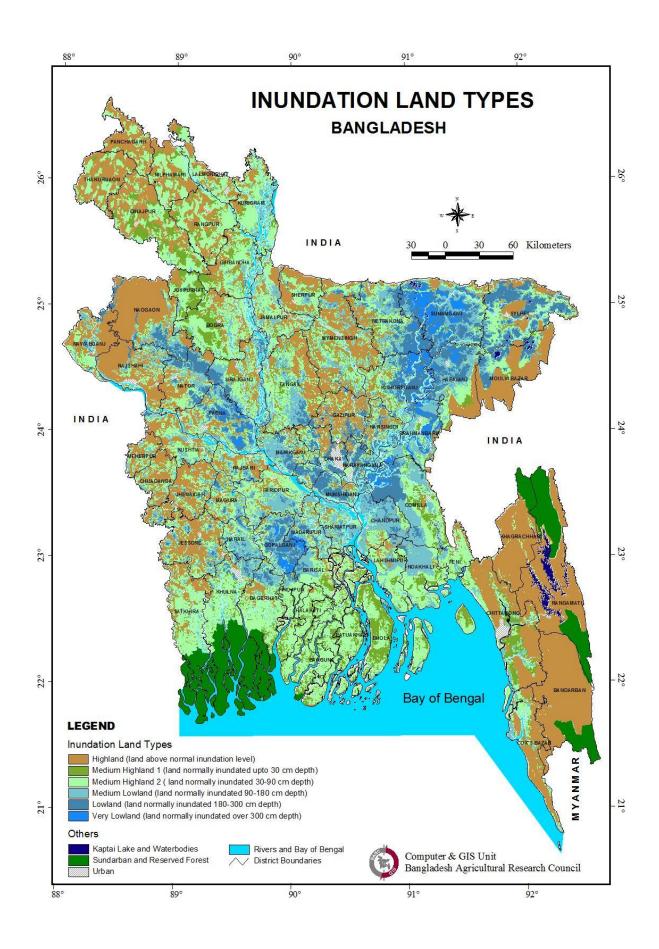
Physiography


Physiography is the combination of geological material in which particular kinds of soil have formed and the landscape on which they occur. It is the primary element in defining and delineating the Agro-ecological Regions of Bangladesh. Altogether, 34 physiographic units and subunits have been recognized. These units have been grouped into 30 AEZ regions.

General Soil Types

A General Soil Type is a group of soils which are broadly similar in appearance and characteristics because they have developed in response to similar environmental factors such as climate, physiography and drainage. Soils form the second element in defining and differentiating agro-ecological regions and sub-regions. Soil conditions determine such important properties for plant growth as moisture supply and root aeration as well as nutrient supply.

General Soil Type	Area (ha)	Percentage
Calcareous Alluvium	589983	4.07%
Noncalcareous Alluvium	568824	3.93%
Calcareous Brown Floodplain Soil	478076	3.30%
Calcareous Grey Floodplain Soil	163027	1.13%
Calcareous Dark Grey Floodplain Soil	1388152	9.58%
Noncalcareous Grey Floodplain Soil	3159858	21.81%
Noncalcareous Brown Floodplain Soil	377720	2.61%
Noncalcareous Dark Grey Floodplain Soil	1595950	11.02%
Black Terai Soil	83408	0.58%
Acid Basin Clay	348994	2.41%
Acid Sulphate Soil	75830	0.52%
Peat	118064	0.82%
Grey Piedmont Soil	215279	1.49%
Brown Hill Soil	1264476	8.73%
Shallow Red-Brown Terrace Soil	72549	0.50%
Deep Red-Brown Terrace Soil	189380	1.31%
Brown Mottled Terrace Soil	34235	0.24%
Shallow Grey Terrace Soil	265427	1.83%
Deep Grey Terrace Soil	352152	2.43%
Grey Valley Soil	114287	0.79%
Made-Land	106286	0.73%
Miscellaneous Land (Urban, Water, Reserve Forest, Sundarban)	2924321	20.19%
Total Area	14486278	100.00%

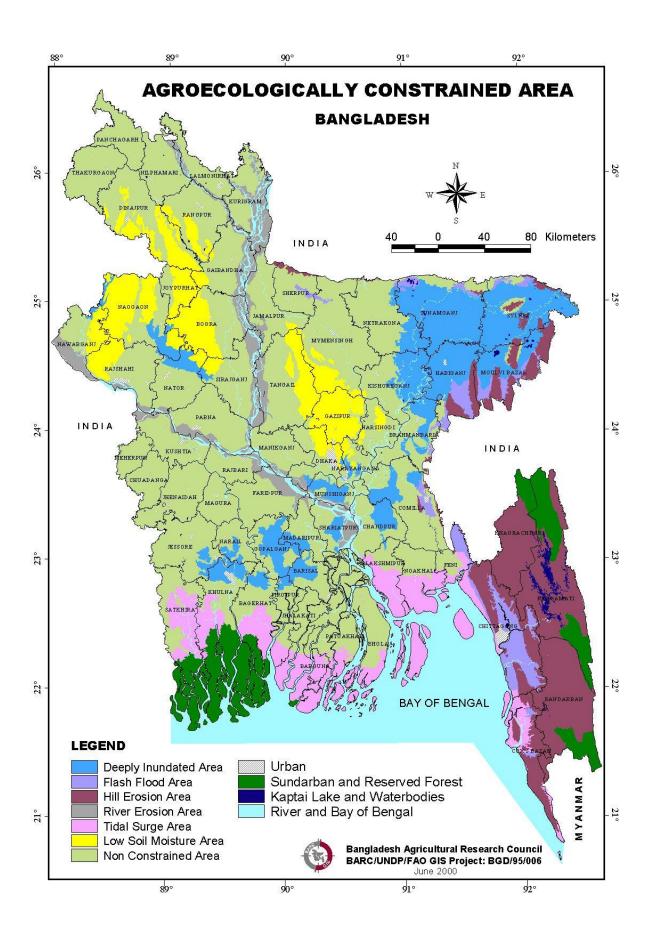

Inundation Land Type

Under rainfed condition, besides all other factors, the depth and duration of inundation of land in the monsoon season and residual moisture status of soils in the dry season largely govern the crops and cropping patterns of the country. Land that stay above normal inundation level and hold good residual soil moisture in the winter, are extensively used for wide range of both seasonal and perennial crops. While those, which are subject to inundation in the rainy season, are restricted to seasonal crops only. The prospects for rabi crops on those land however, depend on the residual soil moisture status.

On most floodplain and valley land, cropping patterns are primarily determined by the seasonal flooding regime, i.e. the dates when inundation begins and ends, the depth of inundation at peak levels and the risk of damage to crops by early, high or late floods. Farmers' traditional cropping patterns and practices are adapted to flooding regimes on a micro-topographical scale: differences of only a few centimetres between neighbouring fields may influence choice of crop varieties or management practices.

Land Type	Description	(%) Area
Highland (H)	land which is above normal flood level	33.50
Medium Highland (MH1)	Land which normally is flooded up to 30 cm	9.30
	deep during flood season	
Medium Highland (MH2)	land which normally is flooded up to between	30.90
	30 cm to 90 cm deep during the flood season	
Medium Lowland (ML)	land which normally is flooded up to between	15.10
	90 cm to 180 cm deep during the flood	
	season	
Lowland (L)	land which normally is flooded up to between	9.50
	180 cm to 300 cm deep during the flood	
	season	
Very Lowland (VL)	land which normally is flooded over 300 cm	1.70
	deep during the flood season	

Six land classes and their percent coverage are shown below based on flood depth.


Agro-ecologically Constrained Area

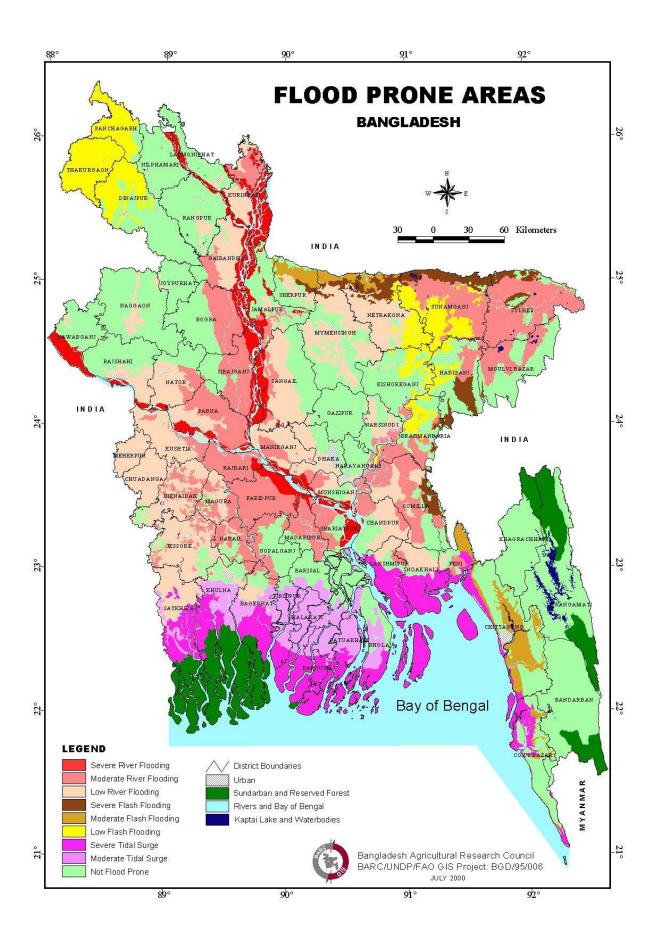
This map is produced to provide some insight in characterizing areas with different levels of both biophysical and socioeconomic limitations so that due considerations are given in local development interventions. The methodology actually involved in characterizing and delineating areas with unique combination of factors constraining especially agricultural development. The selection criteria for delineating mapping unit boundaries for this purpose include:

- Areas susceptible to deep inundation.
- Areas susceptible to Flash Flood Hazard.
- Areas susceptible to Topsoil erosion, Landslide, Landslip.
- Areas susceptible to River bank erosion, siltation.
- Areas exposed to the hazards of salinity, cyclonic storm-surges.
- Areas with low soil moisture status.

Seven constrained classes shown on the map are:

- Deeply inundated Area
- Flash Flood Area
- Hill Erosion Area
- River Erosion Area
- Tidal Surge Area
- Low Soil Moisture Area
- Non constrained Area

Flood Prone Area


Flood prone areas are frequently subject to flood hazard. Again, flood in Bangladesh occurs mainly due to two reasons: one-by overtopping of the riverbanks; and the other due to heavy run-off from the higher sites due to torrential rainfall. Based on these reasons, flood has been broadly classified into two groups (i) River Flood Hazard and (ii) Flash Flood Hazard.

Severe	: Occurs 5 times or more in 10 years with considerable loss/damage of standing
	crops.
Moderate	: Occurs 3-4 times in 10 years with significant loss/damage of standing crops.
Slight	: Occurs atleast twice in 10 years with loss/damage of standing crops.
Not affected	: None in 10 years.

Nine classes shown on the map are:

- » Severe River Flooding
- » Moderate River Flooding
- » Low River Flooding
- » Severe Flash Flooding
- » Moderate Flash Flooding
- » Low Flash Flooding
- » Severe Tidal Surge
- » Moderate Tidal Surge
- » Non Flood Prone

Flood Class	Area (Mha)
Severe River Flooding	0.57
Moderate River Flodding	2.45
Low River Flooding	2.60
Severe Flash Flooding	0.29
Moderate Flash Flooding	0.31
Low Flash Flooding	0.87
Severe Tidal Surge	1.54
Moderate Tidal Surge	0.64
Not Flood Prone	5.64

Drought Prone Area Map

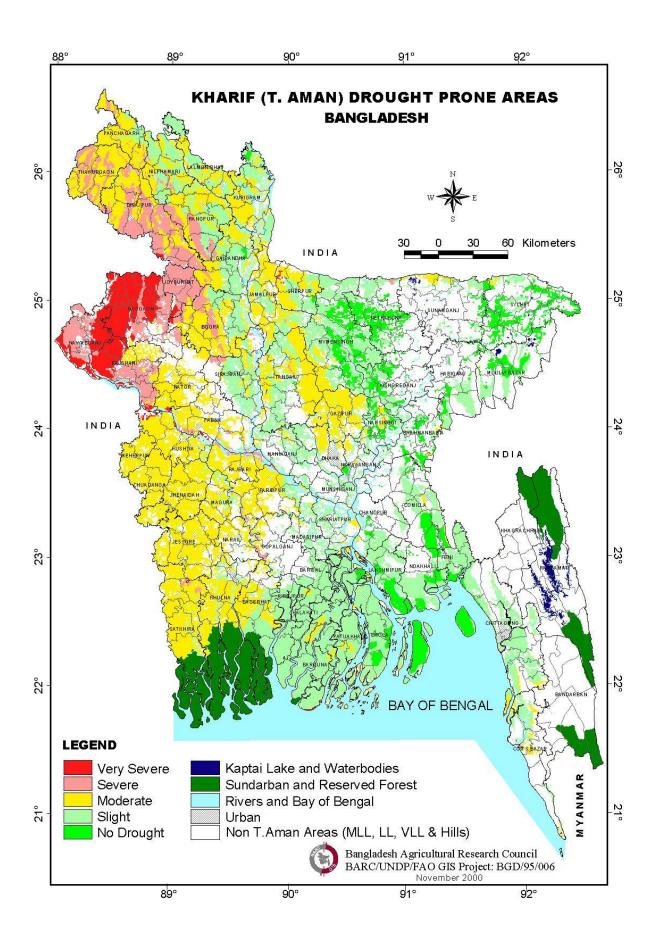
Drought in general sense refers to an agro-ecological condition when precipitations together with residual soil moisture fail to meet the water requirements of standing agricultural crops. From this fact it is apparent that drought is the result of adverse climatic condition together with unfavourable soil and hydrological characteristics.

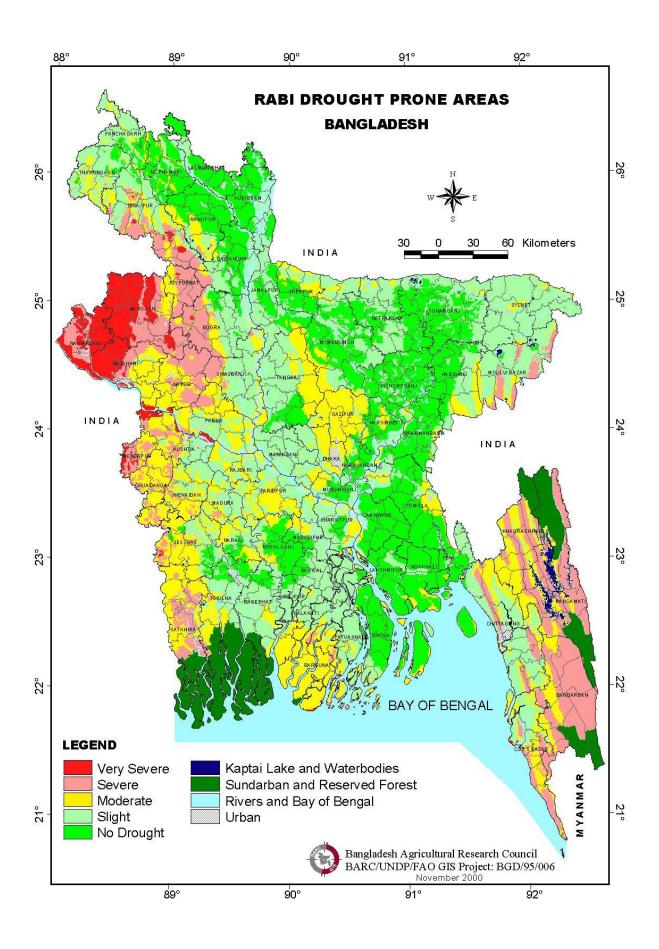
Kharif drought:

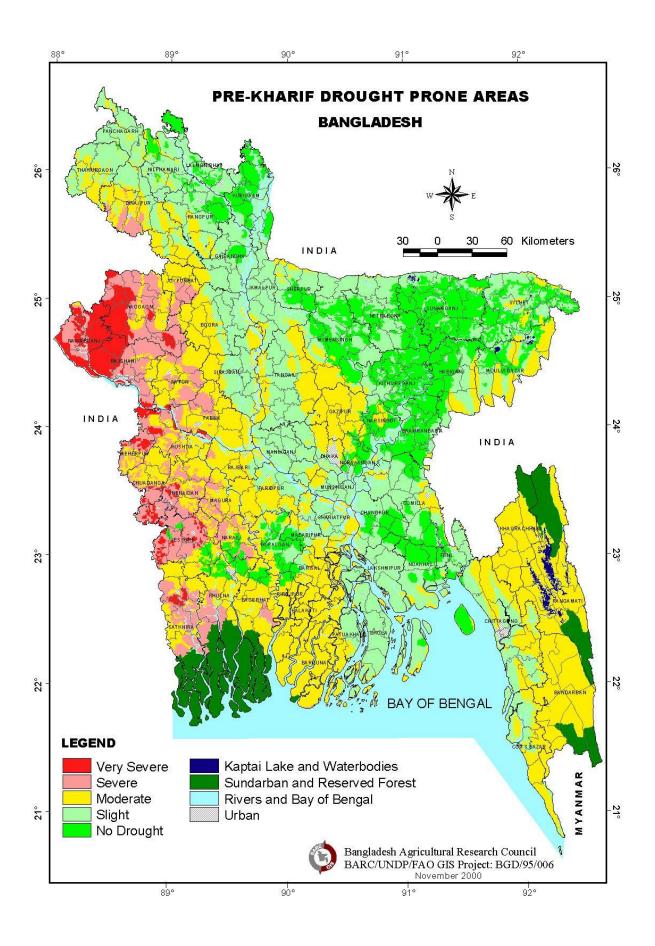
This kind of drought occurs intermittently between June/July-October and affect mostly T.aman on Highland and Medium Highland–1 areas of the country. The situation results from the dominance of dry sub-humid (P<0.5 PET) and dry decades (P=0) with the kharif humid period.

Percentages of dry sub-humid and dry decades were taken into consideration for delineating the kharif drought prone areas. Total numbers of dry days present were derived from the percent of decades within each kharif humid period. Drought severity classes were determined by combining other relevant factors such as soil texture, permeability, drainage, landtype and available moisture holding capacity with the frequency of those decades.

Rabi and Pre-kharif drought:

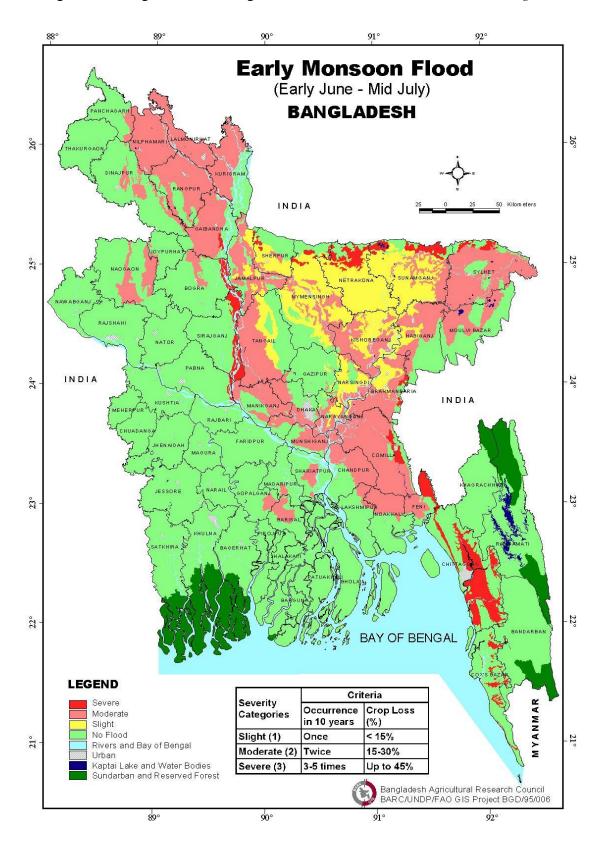

Drought during this period is caused mainly due to the combined effect of dry day, extremely high temperature (>40⁰C), very high rate of evapotranspiration accentuated by unfavourable soil properties related to soil moisture storage capacity. Dry days within the Rabi season as well as Pre-kharif transition period and number of days with maximum temperature exceeding 40^{0} C between March-May were considered as climatic parameters. These were combined with the soil and hydrological parameters to arrive at the severity rating categories where residual soul moisture storage is one of the most important components.

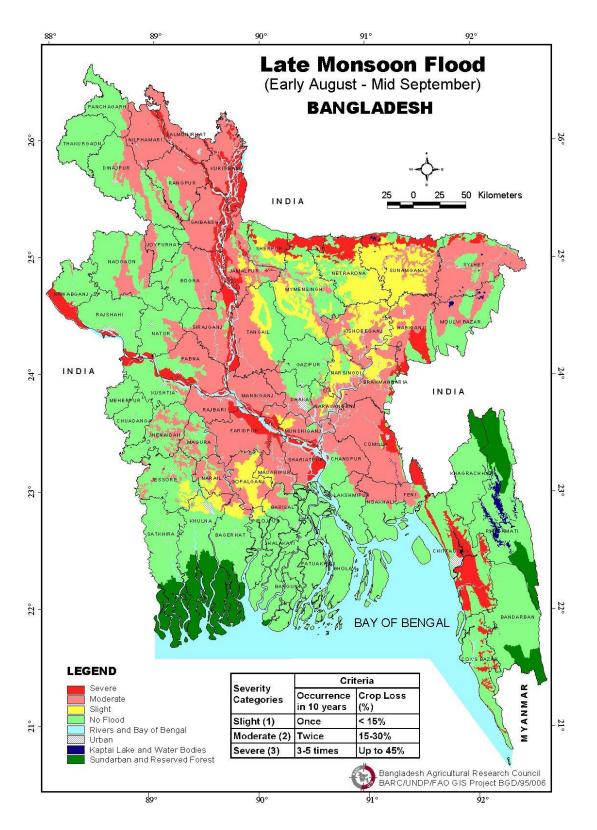

The major categories are:


- 1. Very severe: Yield reduction may be >50 percent from normal.
- 2. Severe: Yield reduction ranges between 30-50 percent.
- 3. Moderate: Yield reduction ranges between 15-30 percent.
- 4. Slight: Yield reduction ranges between <15 percent.

Drought Class	Rabi	Pre-Kharif	Kharif (T.Aman)
Very Severe	0.45	0.40	0.34
Severe	1.71	1.15	0.74
Moderate	2.95	4.76	3.17
Slight	4.21	4.09	2.90
No Drought	3.17	2.09	0.68
Non T.Aman	-	-	4.71

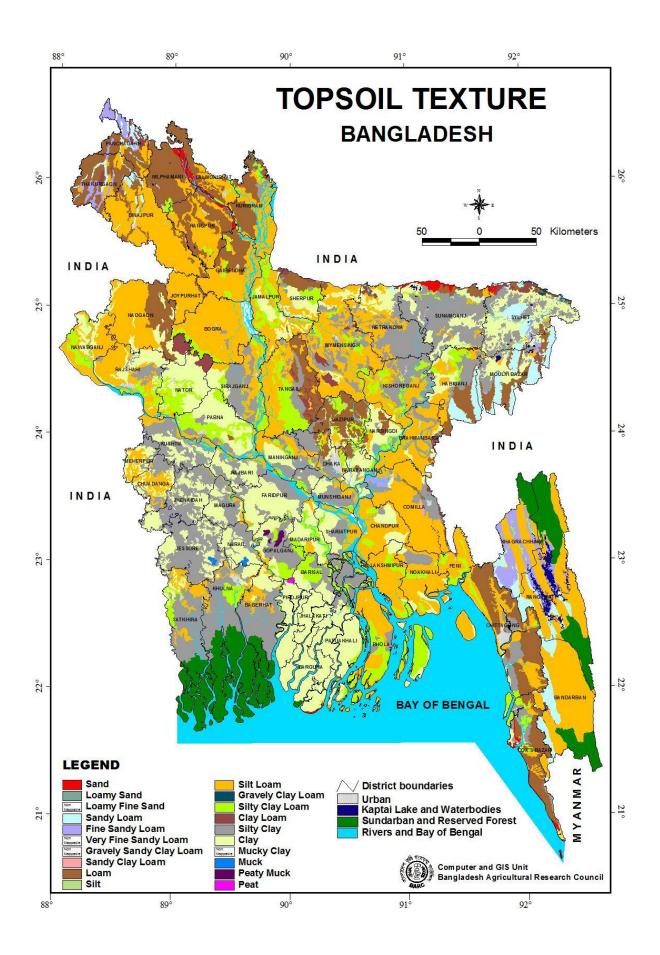
Drought Severity Areas by Crop Seasons (in Mha)




Early Monsoon Map

Early Monsoon Flood in Bangladesh usually occurs between early June to mid July and affects mostly Aus rice, Jute and sometimes T.aman rice crops at varying degrees depending upon the severity of flood and the growth stages of the affected crops. According to the degree of damage, three categories were recognized, such as – *Severe, Moderate and Slight*.

Late Monsoon Map


Late monsoon Floods in Bangladesh occurs generally between early August and mid-September which coincides with the harvesting time of Kharif-I (Aus rice and Jute) crops and transplanting of Aman rice and also already transplanted Aman rice at the early to active vegetative growth stages.

Topsoil Texture Map

Internationally recognized 20 individual soil textural classes were considered to prepare the topsoil texture map of Bangladesh. Except a few, most of these textures occur in the country. Due to large diversity and complexity of soil texture at short distance, in most cases it was not possible to map individual textural class basis, in that case most often more than one textural class had to be taken together to formulate a mapping unit.

Topsoil Texture	Area (ha)	Percentage
Sand	90579	0.80%
Loamy Sand	36205	0.31%
Loamy Fine Sand	35533	0.31%
Sandy Loam	559725	4.80%
Fine Sandy Loam	202892	1.80%
Very Fine Sandy Loam	9657	0.10%
Gravely Sandy Clay Loam	199	0.002%
Sandy Clay Loam	24616	0.20%
Loam	1214578	10.50%
Silt	25863	0.20%
Silt Loam	3617433	31.30%
Gravely Clay Loam	4740	0.04%
Silty Clay Loam	1365183	11.80%
Clay Loam	196064	1.70%
Silty Clay	2131260	18.40%
Clay	2013795	17.40%
Mucky Clay	4930	0.04%
Muck	10316	0.10%
Peaty Muck	11479	0.10%
Peat	6910	0.06%
Total Cultivable Area	11561957	100.00%
Miscellaneous Land (Urban, Water, Reserve Forest, Sundarban)	2924321	
Total Area	14486278	

