Agricultural Research Management Information System

  • Home
  • Research Summary
    • All
    • Government Organization
      • Agriculture Training Institute, Ishwardi, Pabna
      • Bangabandhu academy for poverty alleviation and rural development (BAPARD)
      • Bangabandhu Sheikh Mujibur Rahman Science & Technology University
      • Bangladesh Bureau of Statistics
      • Bangladesh Institute of Health Sciences
      • Bangladesh Institute of Tropical & Infections Diseases (BITID)
      • Bangladesh Meteorological Department
      • Bangladesh National Herbarium
      • Bangladesh Space Research and Remote Sensing Organization
      • Bangladesh Technical Educational Board
      • Barind Multipurpose Development Authority
      • Central Cattle Breeding Station
      • Department of Agriculture Extension
      • Department of Fisheries
      • Department of Livestock Services
      • Department of Youth Development
      • Dhaka Medical College
      • Geological Survey of Bangladesh
      • Institute of Epidemiology, Disease Control & Research
      • Jatiya Kabi Kazi Nazrul Islam University
      • Khulna Govt. Women College
      • Livestock Training Institute
      • Local Government Engineering Department
      • Ministry of Agriculture
      • Ministry of Environment and forest
      • Ministry of Fisheries and Livestock
      • Ministry of Labour & Employement
      • Ministry of Land
      • Ministry of Public Administration
      • Ministry of Textiles and Jute
      • Ministry of Water Resources
      • Ministry of Youth and Sports
      • National Agricultural Training Academy
      • National institute of preventive and social medicine
      • National Mushroom Development and Extension Centre
      • Pabna University of Science and Technology
      • Seed Certification Agency
      • Shaheed Suhrawardy Medical College
      • Sheikh Hasina University
      • University Grants Commission
      • Youth Training Centre
    • Autonomous/Semi-gov Org
      • Bangladesh Academy for Rural Development
      • Bangladesh Agricultural Development Corporation
      • Bangladesh Atomic Energy Commission
      • Bangladesh Council of Scientific and Industrial Research
      • Bangladesh Fisheries Development Corporation
      • Bangladesh Institute of Development Studies
      • Bangladesh Institute of Management
      • Bangladesh Milk Producers Cooperative Union Limited
      • Bangladesh Water Development Board
      • BIRDEM
      • Center for Environmental and Geographic Information Services
      • Hortex Foundation
      • Institute of Water Modeling
      • National Institute of Biotechnology
      • River Research Institute
      • Rural Development Academy
    • NARS
      • Bangladesh Agricultural Research Council
      • Bangladesh Agricultural Research Institute
      • Bangladesh Fisheries Research Institute
      • Bangladesh Forest Research Institute
      • Bangladesh Institute of Nuclear Agriculture
      • Bangladesh Jute Research Institute
      • Bangladesh Livestock Research Institute
      • Bangladesh Rice Research Institute
      • Bangladesh Sericulture Research and Training Institute
      • Bangladesh Sugarcrop Research Institute
      • Bangladesh Tea Research Institute
      • Bangladesh Wheat and Maize Research Institute
      • Cotton Development Board
      • Soil Resource Development Institute
    • Public University
      • Ahsanullah University of Science and Technology
      • Bangabandhu Sheikh Mujibur Rahman Agricultural University
      • Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University
      • Bangladesh Agricultural University
      • Bangladesh Open University
      • Bangladesh University of Engineering and Technology
      • Bangladesh University of Professionals
      • Bangladesh University of Textiles
      • Barisal Government Veterinary College
      • Begum Rokeya University
      • Chittagong University of Engineering and Technology
      • Chittagong Veterinary and Animal Science University
      • Comilla University
      • Dhaka University of Engineering & Technology
      • Dinajpur Government Veterinary College, Dinajpur
      • Gono Bishwabidyalay
      • Hajee Mohammad Danesh Science and Technology University
      • Islamic University, Kushtia
      • Jagannath University
      • Jahangirnagar University
      • Jessore University of Science and Technology
      • Jhenaidha Government Veterinary College
      • Khulna Agricultural University
      • Khulna University
      • Khulna University of Engineering & Technology
      • Mawlana Bhashani Science and Technology University
      • Millitary Institute of Science and Technology
      • National University
      • Noakhali Science and Technology University
      • Patuakhali Science and Technology University
      • Rajshahi University of Engineering and Technology
      • Shahjalal University of Science & Technology
      • Sher-e-Bangla Agricultural University
      • Sylhet Agricultural University
      • Sylhet Government Veterinary College
      • University of Barisal
      • University of Chittagong
      • University of Dhaka
      • University of Rajshahi
    • Private University
      • Asian University of Bangladesh
      • Atish Dipankar University of Science and Technology
      • BGC Trust University Bangladesh
      • BGMEA University of Fashion & Technology (BUFT)
      • BRAC University
      • City University
      • Daffodil International University
      • East West University
      • Exim Bank Agricultural University
      • Gana Bishwabiddalaya
      • Hamdard University
      • Independent University, Bangladesh
      • International Islamic University Chittagong
      • International University of Business Agriculture and Technology
      • Islamic University of Technology
      • Leading University, Sylhet
      • North South University
      • Premier University
      • Primeasia University
      • Private University
      • SOAS, University of London
      • Southeast University
      • Stamford University
      • State University of Bangladesh
      • The Millenium University
      • University of Asia Pacific
      • University of Development Alternative
      • University of Information Technology and Sciences
      • University of Liberal Arts Bangladesh
      • University of Science and Technology, Chittagong
      • World University
    • INGO/IO/NGO/Private Org
      • ACI Limited
      • Agricultural Advisory Society (AAS)
      • Apex Organic Industries Limited
      • Arannayk Foundation
      • Bangladesh Academy of Sciences
      • Bangladesh Centre for Advanced Studies
      • Bangladesh Institute of Social Research
      • Bangladesh Science Foundation
      • Bangladesh Unnayan Parishad
      • BAPA
      • BRAC
      • CARE Bangladesh
      • CARITAS
      • Centre for Environmental Geographical Information System
      • Centre for Policy Dialogue (CPD)
      • Creative Conservation Alliance
      • Dhaka Ahsania Mission
      • Dwip Unnayan Sangstha
      • EMBASSY OF DENMARK, BANGLADESH
      • Energypac Limited Bangladesh
      • FAO- Bangladesh
      • FIVDB
      • ICDDRB, Mohakhali, Dhaka-1212
      • iDE Bangladesh
      • Innovision Consulting Private Ltd.
      • International Center for Climate Change and Development
      • International Centre for Integrated Mountain Development
      • International Development Research Centre
      • International Fertilizer Development Center, Bangladesh
      • International Food Policy Research Institute
      • International Maize and Wheat Improvement Centre
      • International Potato Center
      • IRRI- Bangladesh
      • IRRI-Philippines
      • Ispahani Agro LTD
      • IUCN, Bangladesh
      • Krishi Gobeshina Foundation
      • Lal Teer
      • Mennonite Central Committee
      • Metal (Pvt.) Ltd
      • Modern Herbal Group
      • Palli Karma-Sahayak Foundation
      • Practical Action Bangladesh
      • Proshika
      • RDRS Bangladesh
      • RIRI-Philippines
      • Rothamsted Research
      • SAARC Agricultural Centre
      • SAARC Meteorological Research Centre
      • Social Upliftment Society
      • South Asia Enterprise Development Facility
      • Square Pharmaceuticals Ltd.
      • Supreme Seed
      • Transparency International Bangladesh
      • Unnayan Onneshan
      • USAID
      • Water Resources Planning Organization
      • Winrock International
      • World Bank
      • World Food Program
      • World Vegetable Center
      • WorldFish Centre, Bangladesh
    • Foreign University
      • Asian Institute of Technology
      • Auckland University of Technology
      • Australian National University
      • Bidhan Chandra Krishi Viswavidyalaya
      • BOKU-University of Natural Resources and Applied Life Sciences
      • Cranfield University
      • Curtin University
      • Foreign University/ Institute
      • Hiroshima University
      • Hokkaido University
      • Huazhong Agricultural University
      • International Islamic University, Malaysia
      • Kagawa University
      • Kangwon National University
      • Kochi University
      • Kyoto University
      • Kyushu University
      • Ladoke Akintola University of Technology
      • Murdoch University
      • Nagoya University
      • NOAA-CREST, CCNY
      • Royal Veterinary and Agricultural University
      • San Diego State University
      • Shinshu University
      • Tottori University
      • United Nations University
      • University Malaysia Kelantan
      • University Malaysia Pahang
      • University Nova de Lisboa
      • University of Alberta
      • University of Bremen
      • University of Bremen
      • University of Calgary
      • University of california
      • University of Greenwich
      • University of Hamburg, Hamburg
      • University of Hannover
      • University of Hawaii
      • University of Helsinki, Finland
      • University of Kalyani
      • University of Leeds
      • University of Liverpool
      • University of Malaya
      • University of Milan
      • University of New England
      • University of Philippines
      • University of Plymouth
      • University of Queensland
      • University of Reading
      • University of Southampton
      • University of Texas
      • University of the Punjab
      • University of Tokyo
      • University of Toronto
      • University of Wales
      • University of Washington
      • University of Wollongong
      • University Putra Malaysia
      • University Sains Malaysia
  • Search
    • Search by Keyword
    • Search by Organization
    • Search by Program Area
    • Search by Commodity/Non-commodity
    • Search by Funding Source
    • Search by Researcher
    • Custom Search
    • On-going Research
  • About Us
    • ARMIS
    • Brochure
  • Contact Us
    • BARC Personnel
    • ARMIS Personnel
    • Feedback
  • Report
    • All
    • By Organization
      • Bangladesh Agricultural Research Council
      • Bangladesh Agricultural Research Institute
      • Bangladesh Fisheries Research Institute
      • Bangladesh Forest Research Institute
      • Bangladesh Institute of Nuclear Agriculture
      • Bangladesh Jute Research Institute
      • Bangladesh Livestock Research Institute
      • Bangladesh Rice Research Institute
      • Bangladesh Sericulture Research and Training Institute
      • Bangladesh Sugarcrop Research Institute
      • Bangladesh Tea Research Institute
      • Bangladesh Wheat and Maize Research Institute
      • Cotton Development Board
      • Soil Resource Development Institute
    • Research Trend Analysis
  • User Request
  • Data Input
  • Help
    • Operation Manual
      • PDF
      • Video
    • Program Area & Commodity
  • We have reached 37600 number of research entries at this moment.
    • Logout

Research Detail

  1. Home
  2. Research
  3. Detail
Sushil Pandey
International Rice Research Institute, Los Baños 4030, Philippines

Sudhir Yadav*
International Rice Research Institute, Los Baños 4030, Philippines

Jon Hellin
International Rice Research Institute, Los Baños 4030, Philippines

Jean Balié
International Rice Research Institute, Los Baños 4030, Philippines

Humnath Bhandari
International Rice Research Institute, Dhaka 1213, Bangladesh;

Arvind Kumar
International Rice Research Institute, Varanasi 221106, India

Manoranjan K. Mondal
International Rice Research Institute, Dhaka 1213, Bangladesh

Rapid expansion of groundwater use for irrigation for dry season rice production in Bangladesh has led to overuse, deterioration of groundwater quality, increased cost of irrigation, and higher greenhouse gas emissions. The divergence between marginal private and social cost of irrigation due to market failures in the presence of these externalities has resulted in excessive use of groundwater. A combination of policy reforms and improvements in irrigation practices are hence needed to reduce irrigation water use. The paper analyses why an improved irrigation practice, known as “alternate wetting and drying (AWD)” that can potentially reduce irrigation water use substantially, has failed to scale despite widespread testing and promotion in Bangladesh for over a decade. The main reason for this failure to scale is the lack of economic incentives to save water as pricing is based on per unit area irrigated, not on the amount of water used. This paper highlights the dynamics of the water market and pricing in Bangladesh, along with biophysical and social constraints to farmer adoption of AWD. It also proposes changes in policy incentives, new directions for crop and water management research, and institutional reforms for wider adoption of AWD and other water-saving practices.

  AWD; Incentives; Social cohesion; Technology adoption; Water management
  In Bangladesh
  
  
  Crop-Soil-Water Management
  Rice, Alternate wetting and drying

The focus of this paper is on the broader biophysical and social constraints, policy incentives, and institutional reforms for a wider diffusion of AWD.

3. Alternate Wetting and Drying (AWD): Its Features, Adoption, and Effects Traditionally a rice field is continuously flooded. This practice evolved when water for irrigation was abundant and freely available or heavily subsidized. When water is physically or economically scarce, frequent irrigation becomes less feasible. Farmers are subsequently forced to practice intermittent irrigation. This may result in field-drying between irrigations and minimal to severe yield loss depending on the length of the irrigation interval and the crop growth stages. All such intermittent irrigation practices involve alternate wetting and drying (AWD), but the yield loss associated with “unintended” or “forced” AWD can be substantial.

In contrast, “safe-AWD” is a practice that maintains the yield level. It involves practicing intermittent irrigation guided by the observed soil moisture status. For example, a form of safe-AWD involves monitoring the depth of the perched water table, as indicated in perforated plastic tubes embedded in the soil, and irrigating when the perched water table falls below 15 cm from the soil surface. These guidelines were outputs from the Irrigated Rice Research Consortium (IRRC) under which many field experiments were conducted across Asia. The research showed a 15-cm fall in the water table is a safe threshold value to avoid any yield decline due to water stress while simultaneously significantly increasing the water productivity. Safe-AWD also includes ponded water at panicle initiation to flowering to avoid any stress at these critical growth stages. Different variants of safe-AWD allow for suitable adjustments in the timing and frequency of irrigation depending on the crop growth stage and farmers’ ability to control irrigation flow.

3.1. Adoption of Safe Alternate Wetting and Drying (AWD) in Bangladesh Safe-AWD was introduced to Bangladesh in 2004 and targeted at northwest Bangladesh—a major boro rice-growing area that suffers from water scarcity due to the rapid expansion of groundwater use for irrigation. Various agencies, including the Bangladesh Rice Research Institute (BRRI), Department of Agricultural Extension (DAE), and BADC, carried out farmer field evaluations and demonstrations trials together with farmer training from 2005 to 2009. Studies highlighted the potential irrigation water saving and economic benefits that could be realized with AWD.

There are no known studies that confirm a continued use (or expansion of coverage area) by those farmers who participated in the original piloting and field testing of AWD or by other non-participating farmers. It is also unclear how many farmers who participated invalidation trials decided to continue with the practice as no follow-up surveys were carried out. Activities to promote safe-AWD seem not to have expanded beyond the initial field testing and validation despite several national-level deliberations on the need to address water scarcity. A recent survey conducted in the northwest region of Bangladesh did not find any farmers who practiced AWD. This suggests constraints within and outside the irrigation sub-sector, stymying the diffusion of safe-AWD.

3.2. Effects of Safe Alternate Wetting and Drying Discerned from Field Testing and Validation Trials Indications of the effects of safe-AWD in Bangladesh can be discerned from field testing and validation trials. Most of these trials were conducted on farmers’ fields and involved comparing results from the safe-AWD treatments and farmers’ irrigation practices. Most of the studies indicate that the number of irrigations applied to boro rice under safe-AWD treatment is lower than farmers’ normal practices. Farmers used 14–21 irrigations under conventional practices compared to 10–16 irrigations under safe-AWD, a reduction of 27–35%. The reduction in the volume of water is likely to be less than the proportionate reduction in the number of irrigations as the amount of water applied to safe-AWD plots at each irrigation is generally more than water added to already-saturated or flooded plots. The observed savings in irrigation at the field level do not translate directly into savings at the system level due to return flows and recycling of drainage water. The drainage, runoff, and seepage losses from an individual field are often not losses at higher spatial scales. Runoff makes its way to other farmers’ fields or surface water bodies from where it may be reused in various ways, and drainage flows to the groundwater, from where it can be recycled by groundwater pumping (unless the groundwater quality is poor). Seepage flows to adjacent fields, surface drains, or groundwater. Thus, any irrigation water savings estimated through such field trials overestimate the actual water savings at a larger scale.

  Water 2020, 12, 1510
  doi:10.3390/w12051510
Funding Source:
1.   Budget:  
  

The limited scaling of technologies/practices tested and evaluated mainly at farm-level practices such as AWD illustrates that policy and market failures have reduced the economic incentives to adoption. Overexploitation of groundwater and the associated negative externalities are the result of market failures that have driven the marginal cost of water to almost zero under the dominant water market contracts in Bangladesh. It is also illustrative of conflicting policy signals that promote water-saving practices while simultaneously subsidizing irrigation for achieving self-sufficiency in rice production. Clearly, a technology “push” to scale AWD will not be successful without overcoming these market and policy failures. A largely informal self-provisioning water economy based on millions of buyers and sellers of irrigation services without any intermediation severely constrains the effectiveness of administrative and regulatory policies alone to influence Bangladeshi farmers’ irrigation practices. Hence, the challenge is to design a mix of improved farm-level technologies that increase water productivity, improve water management practices at the irrigation systems level, and introduce policies that provide economic incentives for the adoption of sustainable irrigation practices. An interdisciplinary approach is needed because any improvement in irrigation practices needs to be in the context of underlying socio-political systems and the economic opportunities for millions of farmers.

The theory of induced institutional innovation dictates that institutional arrangements tend to evolve towards saving resources that are increasing in scarcity unless such an evolution is constrained by policies or some other external factors. Government policy has supported farmers by keeping the price of water lower relative to rice price through the provision of power subsidies. This policy, while successful in achieving the objective of ensuring self-sufficiency in rice, may have also slowed down the evolution of water markets towards more efficient pricing systems that reflect the true scarcity value of water. A gradual and rationalized reduction of power subsidy may be warranted as the resulting increase in water price may catalyze the institutional evolution of the water market towards more efficient pricing. A strategic approach to overcoming water scarcity in rice production in Bangladesh requires effective demand management as opportunities for supply augmentations are limited. The choice of cropping patterns, crops, suitable varieties, agronomic practices, and production locations should be guided by the objective of increasing the overall economic efficiency of irrigation. Increased investments in agricultural R&D, technology dissemination, and capacity building are needed so that farmers can have a larger set of productive and water-efficient production options to choose from. Working on field-level technologies of water management may be important, but care must be taken not to lose sight of other broader opportunities that can generate a much bigger impact at the irrigation system-level. There may be more effective opportunities for saving large volumes of irrigation water at the system level with the existing technologies than extrapolating the gain at the field-level.

  Journal
  


Copyright © 2025. Bangladesh Agricultural Research Council.